
МЕТОДЫ И СИСТЕМЫ ЗАЩИТЫ ИНФОРМАЦИИ, ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ 63

 Вестник УрФО № 2(44) / 2022, с. 63–69

Ghadeer Darwesh, Jaafar Hammoud, Vorobeva A.A.

SECURITY IN KUBERNETES: BEST
PRACTICES AND SECURITY

ANALYSIS
Kubernetes emerged as docker containers’ most popular orchestration, it is widely used for

developing microservices and deploying applications. Because of advancements in container-
ization technology, information technology organizations use Kubernetes to manage their sys-
tems and report benefits in the deployment process. However, security concerns have been
highlighted as challenges in Kubernetes deployment, The hackers can exploit the security vul-
nerabilities to cause damage to company assets. This work will shed the light on the Kubernetes
orchestration platform and how attacks can be contacted against subevents manifest. we also
demonstrate 10 security best practices in the Kubernetes cluster based on practitioners’ reports,
which we should follow to help protect our infrastructure.

Keywords: Kubernetes, security, security policies, security practices, container security.

DOI: 10.14529/secur220209

Introduction
In recent years, microservices architecture

has become more important and helped
increase the software agility, containers
emerged as the standard to deploy applications
and microservices to the cloud. Nowadays this
architecture is used by a big number of
organizations to deliver their software such as
Amazon, Netflix, Twitter, and other [1].
Kubernetes is an open-source software system
used in microservices architecture such as cloud
computing, the Internet of Things (IoT), and AI
workflow. It has emerged as the most popular
platform to manage the docker container life
cycle and automate the management of
computerized services.

From the viewpoint of cybersecurity, the
Kubernetes system still has its own security
challenges, and the users reported their
concerns related to Kubernetes security. This
work aims to explain potential exploits in the
Kubernetes cluster and help users in securing
their Kubernetes installation and deployment
platform related to Kubernetes security best
practices.

Section 2 states the background of this work
and some important explanations related to it.
Section 3 explains the threats and most recent
security challenges in the Kubernetes system. In
the last section, we present the Kubernetes

security best practices for securing the
Kubernetes deployment environment.

Backend
Kubernetes, at its fundamental level, maybe

a framework for running and planning
containerized applications over a cluster of
machines. It disposes of most of the existing
manual forms, which include the scaling,
deploying, and managing of containerized
applications [2]. Furthermore, based on
utilization Kubernetes can scale the services up
or down, ensuring we’re only running what we
would, like after we require it, wherever we need
it. Like containers, Kubernetes permits us to
oversee clusters, empowering the setup to be
form controlled and replicated.

For a certain working scale, it gets to be
fundamental to design our applications as a
distributed system. Kubernetes is planned to
supply the infrastructural layer for such desired
systems, yielding clean applications to construct
applications on top of a cluster [3]. More
particularly, Kubernetes gives an interface to
connect and manage this cluster such simply
without needing to communicate individually
with each machine.

Kubernetes follows the architecture of
client-server architecture. It’s conceivable to
have a multi-master setup, but by default, there’s
a single master which acts as a controller and

64 ВЕСТНИК УрФО. БЕЗОПАСНОСТЬ В ИНФОРМАЦИОННОЙ СФЕРЕ № 1(43) / 2022

point of contact [4]. The master server comprises
different components counting a Kube-
apiserver, an etcd, a Kube-controller-manager, a
cloud-controller-manager, a kube-scheduler,

and a DNS server for Kubernetes services. Node
components incorporate kubelet and kube-
proxy on top of Docker.

The Kubernetes master controls and

facilitates all nodes within the cluster with the
assistance of three components that run on one
or more master nodes within the cluster. Each
Kubernetes master in our cluster runs these
three processes:

1. Kube-apiserver: the single point of
administration for the whole cluster. The API
server implements a RESTful interface to
communicate with tools and libraries. The
kubectl command interacts directly with the API
server.

2. Kube-controller-manager: controls the
state of the cluster by managing all different
kinds of controllers.

3. Kube-scheduler: schedules and plans the
workloads across the nodes available in the
cluster.

The entities state within the system is
presented by Kubernetes Objects at any given
point in time. Kubernetes Objects too act as an
extra layer of abstraction over the container
interface. We will presently specifically connect
with instances of Kubernetes Objects rather

than connection with containers. The
fundamental Kubernetes objects are as follows:

Pod is the littlest deployable unit on the
nodes. It’s a bunch of containers that must run
together. Very regularly, but not fundamentally,
the pod contains one container.

Service is used to characterize a logical set
of Pods and related policies utilized to access
them.

Volume is basically a directory accessible to
all containers running in a Pod. Namespaces are
virtual clusters supported by the physical cluster.

Kubernetes security
Kubernetes workloads are vulnerable to

several types of security threats, including:
• Compromise of the control plane—basic

components like the API Server and etcd are not
enough secured by default. The attacker gaining
access to a Kubernetes master node can get
control of the entire cluster.

• Compromise of pods and nodes—an
attacker can get access to a physical host
running Kubernetes pods, or to the individual

МЕТОДЫ И СИСТЕМЫ ЗАЩИТЫ ИНФОРМАЦИИ, ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ 65

pods, enabling exfiltration of data within the
pods.

• Compromise of network connections—
pods and containers may be able to freely
connect to each other and could be exposed to
the public Internet. Any such open connections
are an entry point for the attacker.

• Compromise of containers—containers
can become vulnerable, due to a vulnerability or
misconfiguration, or a backdoor in the container
image. Containers with excess privileges can
allow attackers access to the physical host.

Kubernetes security is imperative throughout
the container lifecycle due to the dispersed,
dynamic nature of a Kubernetes cluster.
Distinctive security approaches are required for
each of the three stages of an application
lifecycle: build, deploy, and runtime. Kubernetes
gives intrinsic security advantages. For case,
application containers are regularly not fixed or
updated — instead, container images are
replaced totally with new versions. This enables
strict version control and grants fast rollbacks in
case a vulnerability is revealed in new code.

Despite the detailed benefits, recent studies
show that security is one of the essential
concerns for practitioners[5]. The study result
from the StackRox [9] suggests that more than
44% of organizations delay their deployment for
security concerns. The result moreover illustrates
that 94% of the organizations have confronted
at least one security occurrence within the final
12 months, among which 69% of security issues
are misconfiguration-related [6]. The Cloud
Computing (CNCF) study [6] result appears that
32% of practitioners among 1,324 overview
members consider that security is their essential
challenge in Kubernetes. Recent occurrences of
security breaches give the authenticity of the
professionals’ concern.

According to the security risks characterized
in NIST SP-800-190, most of the security solutions
are appropriate for image pretest and also for
operating system and network layer discovery
within the host [7]. For protection against
network attacks, we can introduce IPS, IDS, and
web application firewalls within the network
layer. In the operating system layer, we can install
an antivirus program and host IDS for assurance
against malware attacks. As there are numerous
services on a single host in the runtime container
environment, inner activities or anomalous
behavior for each container cannot be followed
by previous security solutions; only external
communication attacks may be identified. This

limits the ability to recognize containers that are
subject to hacking attacks.

Related work
To collect our Internet artifacts. We use the

Google search engine with 3 search strings:
“Kubernetes security” ‘Kubernetes security best
practices, ‘Kubernetes security policies”.

[8] explored the availability of Kubernetes
using a set of tests, and detailed that service
outages can happen frequently. Shah and
Dubaria [9] compared management features of
Kubernetes, Docker Swarm, and Google Cloud
Platform, and watched Kubernetes provide
features, such as monitoring, deployment, and
easy scalability. Takahashi etal Burns et al. [10]
described the advancement of container
management systems at Google and described
how two internal systems called Omega and
Borg evolved into Kubernetes.

Container security: SANS12 presented
several tools for container security. For example,
AppArmor13 was introduced as a policy-based
Linux kernel security module that helps system
administrators restrict process capabilities, such
as file read/write permissions or network access,
through their own security profiles[7].

[11] proposed a Kubernetes portable load
balancer and detailed improved portability
without sacrificing performance. Song et al. [12]
constructed an auto-scaling system for API
gateways using Kubernetes. The authors [12]
reported that their constructed system could
improve the utilization of system resources and
ensure high availability. Muralidharan et al. [12]
presented a Kubernetes-based system to
manage and monitor Internet of Things (IoT)
applications for smart cities.

reviewer [13]introduced a case study on
Kubernetes and talked about how key concepts
of Kubernetes can be utilized to streamline the
scaling of containers. Medel et al. [14] collected
real data from Kubernetes and used it to apply
formal modeling to characterize resource
management in Kubernetes. Chang et al. [15]
presented a monitoring platform that uses
Kubernetes to dynamically provision cloud
resources.

KUBERNETES SECURITY PRACTICES
In this section we describe 10 Kubernetes

security best practices reported by practitioners
that can take enterprise security to the next
level:

Authentication and Authorization Role-
Based Access Control (RBAC) [9]

Authentication in Kubernetes alludes to the

66 ВЕСТНИК УрФО. БЕЗОПАСНОСТЬ В ИНФОРМАЦИОННОЙ СФЕРЕ № 1(43) / 2022

verification of API requests through
authentication plugins [16]. Authorization refers
to the assessment of each authenticated API
request against all policies to permit or deny the
request [16].

One of these available plugins is the role-
based access control (RBAC) plugin which allows
the customer to control who can access the
Kubernetes API and what permissions they have
[17].

Practitioners have detailed a set of tasks to
actualize the practice of authentication and
authorization:

• In case we upgraded from a very old
Kubernetes release and had not enabled RBAC
earlier, RBAC settings should be checked to
make sure they are enabled.

• Anonymous access to the Kubernetes
server ought to be disabled. By default,
Kubernetes permits anonymous get to the
Kubernetes API server. [16] For case, a malicious
user can figure out the default configuration of
an insecure admission, gain access to the
admission controller, and execute malicious
commands.

• We should moreover manage the
authorization approaches and utilize them
properly. We use RBAC to limit groups and
clients to just the activities and tasks they may
need.

• Admission controller is a tool that
intercepts requests to the Kubernetes API after
the request is authorized, and before a volume is
made persistent. Admission controllers have to
be enabled and default authorization modes
have to be disabled.

• We also should continuously follow the
principle of least privilege to guarantee that
users and Kubernetes service accounts have the
minimal set of privileges required and make
sure to not provide clusterwide authorizations,
and don’t deliver anybody cluster admin
privileges unless completely necessary.

Private Kubernetes API Endpoint
Kubernetes cluster admins and operators

can configure the Kubernetes API endpoint of a
cluster as part of a public or private subnet. In
the private cluster, the API server (endpoint)
inside the control plane has a private IP address
that makes the master blocked off from the
public internet. In expansion to private worker
nodes, we should make sure to configure the
Kubernetes API endpoint as a private endpoint.

Kubernetes-specific Security Policies
Network policies Containerized applications

generally make utilize cluster networks. We
watch active network activity and compare it to
the traffic permitted by Kubernetes network
policy, to recognize how our application
interacts and identify anomalous
communications. By default, all Kubernetes
pods have the ability to communicate with
other pods. Practitioners suggest approaches to
reduce network exposure, restrict traffic
between pods, and restrict API server access to
secure the network. In case firewalls are not set
and network policies are not defined, at that
point anybody may attack the API server from
any IP address.

Pod-specific policies: It’s recommended to
apply security context to pods and containers.
Pod policies define how the workloads should
run in the Kubernetes cluster. Implementing
workloads without defining a secure context for
pods can make the Kubernetes cluster
vulnerable, where a container can run with root
privilege and write permission into the root file
system. Practitioners also recommend that
containers inside a pod must run as a non-root
user with enabling Linux security modules and
read-only permission.

Audit Logging Monitor Network Traffic to
Limit Communications

It is recommended to enable audit logging
and save audit logs to a secure repository to
analyze the event of a compromise. Kubernetes
moreover gives cluster-based logging to record
container activity into a central logging
subsystem. The standard output and error
output of each container in a Kubernetes cluster
can be ingested using an agent like Fluentd
running on each node into tools like Elasticsearch
and seen with Kibana. And at last, monitor pods,
containers, services, and other components of
our cluster using tools such as Prometheus and
Grafana for monitoring, visibility, and following
our cluster’s state.

Namespace separation
A ‘namespace’ in Kubernetes is a logically

isolated virtual cluster inside the physical cluster.
[16] The creation of namespaces enables
resources to be isolated between namespaces.
Practitioners suggest that each group in a
company should have a separate namespace for
better manageability and running its production
and development and environments.

Isolate Kubernetes Nodes
In addition to OS security, it is recommended

that nodes are on a private network and not
accessible from outside. A gateway may be

МЕТОДЫ И СИСТЕМЫ ЗАЩИТЫ ИНФОРМАЦИИ, ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ 67

configured to get other services outside the
cluster network, if required network ports to
access nodes should be controlled via access
lists. It is additionally recommended to restrict
Secure Shell (SSH) access to the nodes.

Keep Kubernetes Version Up to Date
We should always update our cluster and

run the most recent version of Kubernetes. This
helps us to keep updated with all new security
patches and Kubernetes updates. Upgrading
Kubernetes can be a complex process case we’re
using a hosted Kubernetes provider.

Encrypt and restrict access to etcd
Etcd stores the state of the cluster and its

secrets, so it is a sensitive asset and an attractive
target for attackers. If unauthorized users could
access the etcd, they can take over the whole
cluster. Read access is additionally dangerous
since malicious users can utilize it to elevate
privileges.

The security practice is to encrypt the etcd
storage. Encryption is important for securing
etcd, and it’s not enabled by default. We can
enable it via kube-apiserver process, bypassing
the argument “–encryption-provider-config”
within the configuration, we need to select a
provider to perform encryption and define our
secret keys. [17]. Practitioners recommend
restricting access to ‘etcd’, to only be available
from the API servers, and isolated behind a
firewall.

Limit CPU and memory quota
If a malicious user begins a denial of service

(DOS) attack within a pod inside the Kubernetes
cluster at that point, due to a high volume of
requests, Kube-scheduler will create a new pod
and an instance of the container will begin
inside the new pod. This process proceeds until

it consumes all available CPU resources and
memory leaving all the applications in
starvation. Practitioners recommend defining
the number of resources by defining the
maximum amount of memory for a namespace
or a pod, the number of CPU shares for an
application to consume, and the maximum
number of instances for a container.

Enable SSL/TLS support
Practitioners suggest enabling TLS and SSL

certificates for Kubernetes components.
Enabling transport layer security (TLS) or secure
sockets layer (SSL) protocol to ensure secure
and encrypted communication between
Kubernetes components.

Conclusion and future work
Over the years, containerization has steadily

appeared its potential edges in the market.
Developers use container innovation and
serverless computing to solve various real-world
challenges, such as VM’s auto-scaling,
performance loss issues, optimizing fetched,
stack adjusting, and numerous others.
Kubernetes is getting to be an attractive choice
for keeping up containers for practitioners and
organizations. Securing the Kubernetes system
requires more consideration as default
configurations of Kubernetes are frequently
unreliable and insecure. Our paper appears that
secure and effective utilization of Kubernetes
requires the implementation of security
practices applicable for numerous components
inside the Kubernetes establishments: pods,
containers, ‘etcd’ database, etc. This work helps
practitioners to secure their Kubernetes
installations system. Further, our current
findings can lay the basis for conducting
research in Kubernetes security.

References
1. Sultan S., Ahmad I., Dimitriou T. Container security: Issues, challenges, and the road ahead // IEEE

Access. 2019. Т. 7. С. 52976–52996.

2. Hightower K., Burns B., Beda J. Kubernetes: Up and running: Dive into the future of Infrastructure.
Beijing, China: O’reilly, 2017.

3. Mondal S.K. и др. Kubernetes in it administration and Serverless Computing: An empirical study and
research challenges // The Journal of Supercomputing. 2021. Т. 78. № 2. С. 2937–2987.

4. Zhu H., Gehrmann C. Kub-SEC, an automatic Kubernetes Cluster APPARMOR Profile Generation
Engine // 2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS). 2022.
С. 129–137.

5. Shamim S.I. Mitigating security attacks in Kubernetes manifests for security best practices violation
// Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 2021. С. 1689–1690.

6. 94% of organizations have suffered insider data breaches, egress research reveals [Электронный

68 ВЕСТНИК УрФО. БЕЗОПАСНОСТЬ В ИНФОРМАЦИОННОЙ СФЕРЕ № 1(43) / 2022

ресурс]. URL: https://www.businesswire.com/news/home/20210713005123/en/94-Of-Organizations-
Have-Suffered-Insider-Data-Breaches-Egress-Research-Reveals (дата обращения: 05.06.2022).

7. Tien C.W. и др. Kubanomaly: Anomaly Detection for the Docker orchestration platform with neural
network approaches // Engineering Reports. 2019. Т. 1. № 5.

8. Abdollahi Vayghan L. и др. Deploying microservice based applications with Kubernetes: Experiments
and Lessons Learned // 2018 IEEE 11th International Conference on Cloud Computing (CLOUD). 2018.
С. 970–973.

9. Shah J., Dubaria D. Building modern clouds: Using Docker, Kubernetes & Google Cloud Platform //
2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). 2019. С. 184–189.

10. Burns B. и др. Borg, Omega, and kubernetes // Queue. 2016. Т. 14. № 1. С. 70–93.

11. Aida K., Tanjo T., Sun J. A portable load balancer for kubernetes cluster // Proceedings of the
International Conference on High Performance Computing in Asia-Pacific Region. 2018. С. 222–231.

12. Song M., Zhang C., Haihong E. An auto scaling system for API gateway based on Kubernetes // 2018
IEEE 9th International Conference on Software Engineering and Service Science (ICSESS). 2018. С. 109–112.

13. Brewer E.A. Kubernetes and the path to cloud native // Proceedings of the Sixth ACM Symposium
on Cloud Computing. 2015. С. 167–167.

14. Medel V. и др. Modelling Performance & Resource Management in Kubernetes // Proceedings of
the 9th International Conference on Utility and Cloud Computing. 2016. С. 257–262.

15. Chang C.-C. и др. A Kubernetes-based monitoring platform for Dynamic Cloud Resource
Provisioning // GLOBECOM 2017 - 2017 IEEE Global Communications Conference. 2017. С. 1–6.

16. Kubernetes Documentation [Электронный ресурс]. URL: https://kubernetes.io/docs/home/ (дата
обращения: 05.06.2022).

17. Islam Shamim M.S., Ahamed Bhuiyan F., Rahman A. Xi commandments of Kubernetes Security: A
systematization of knowledge related to Kubernetes Security Practices // 2020 IEEE Secure Development
(SecDev). 2020. С. 58–64.

Ghadeer Darwesh, Ph.D. Student ITMO. Kronverksky pr., 49, St. Petersburg, Russia,197101.
E-mail: ghadeerdarwesh32@gmail.com

Jaafar Hammoud, Ph.D. Student ITMO. St. Petersburg, Kronverksky pr., 49, St. Petersburg, Russia,
197101. E-mail: hammoudgj@gmail.com

VOROBEVA Alisa Andreevna, Associate professor ITMO. Kronverksky pr., 49, St. Petersburg,
Russia, 197101. E-mail: alice_w@mail.ru

МЕТОДЫ И СИСТЕМЫ ЗАЩИТЫ ИНФОРМАЦИИ, ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ 69

УДК 004.42 + 004.49 + 004.056

Гадир Дарвеш, Джафар Хаммуд, Воробьева А.А.

БЕЗОПАСНОСТЬ В ПЛАТФОРМЕ
KUBERNETES: РЕКОМЕНДАЦИИ
И АНАЛИЗ БЕЗОПАСНОСТИ

Платформа Kubernetes появилась как самая популярная оркестровка контейне-
ров Docker и широко используется для разработки микросервисов и развертывания
приложений. Благодаря усовершенствованию технологии контейнеризации, органи-
зации в сфере информационных технологий применяют платформу Kubernetes для
управления своими системами и создания отчетов о положительных эффектах в
процессе развертывания. Однако специалисты обращают внимание на возможные
проблемы обеспечения безопасности при развертывании с использованием плат-
формы Kubernetes. Хакеры могут воспользоваться уязвимыми местами системы без-
опасности, чтобы нанести вред активам компании. Данная работа прольет свет на
платформу оркестровки Kubernetes и на то, как проявляются атаки на подсобытия
и как справляться с ними. Мы также приводим основанные на отчетах практикую-
щих специалистов 10 рекомендаций по безопасности для кластера платформы
Kubernetes, которые следует соблюдать для обеспечения защиты инфраструктуры.

Ключевые слова: платформа Kubernetes, безопасность, правила разграничения
доступа, рекомендации по безопасности, безопасность контейнера.

Гадир Дарвеш, аспирант Университета ИТМО. Кронверкский пр., 49, Санкт-Петербург, Рос-
сия, 197101. Электронная почта: ghadeerdarwesh32@gmail.com

Джафар Хаммуд, аспирант Университета ИТМО. Санкт-Петербург, Кронверкский пр., 49,
Санкт-Петербург, Россия, 197101. Электронная почта: hammoudgj@gmail.com

ВОРОБЬЕВА Алиса Андреевна, доцент Университета ИТМО. Кронверкский пр., 49, Санкт-
Петербург, Россия, 197101. Электронная почта: alice_w@mail.ru

